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1. Introduction

Preons were introduced [1] as the possible fundamental constituents of M-theory. They are

defined as BPS states that preserve all supersymmetries but one. For D=11, this means

31 supersymmetries out of 32, and hence a preon may be labelled as

|BPS preon〉 = |BPS , 31/32〉 . (1.1)

As shown in [1], a k/32-BPS state for 1 < k < 32 may be considered as a composite

of ñ = 32 − k preons. Fully supersymmetric BPS states (k = 32) do not contain any

preons and, hence, may be considered as preonic vacua (‘vacua of vacua’, since all the k-

supersymmetric BPS states are stable and are considered themselves as different M-theory

vacua); a preon is the simplest excitation over such a fully supersymmetric vacuum. At

the other extreme, a non-supersymmetric (and, hence, non BPS) state, breaking all 32

supersymmetries, is a composite of the maximal number, 32, of independent BPS-preons.

– 1 –
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The preon definition [1] also applies to arbitrary D [2, 3]. The D= 4,6,10 counterparts

of a BPS preon can be associated [2 – 4] with an infinite tower of free higher spin fields

(see [5, 6]). This identification can be established through the quantization [7, 4] of a gen-

eralized superparticle [8] which provides a model for a point-like or 0-brane preon [2, 3, 9].

The standard realization of BPS states is provided by k-supersymmetric solutions of

the equations of motion for the D=11 or type II D=10 supergravities, which are low

energy limits of M-theory.1 A k-supersymmetric BPS state, or k/32-BPS state, may be

described by a supergravity solution preserving a fraction k/32 of the supersymmetries.

The k-supersymmetric bosonic solutions are characterized by k bosonic Killing spinors,

which obey the generalized Killing spinor equation

Dǫ
I

α := Dǫ
I

α − ǫ
I

β tβ
α := dǫ

I
α − 1

4ǫI
β Γabβ

αωab − ǫ
I
β tβ

α = 0 , I = 1, . . . , k . (1.2)

In eq. (1.2), D = d − w = D − t is the generalized covariant derivative involving the

generalized connection wβ
α = ωβ

α + tβ
α, where ωβ

α = 1
4ω

abΓabβ
α is the spin connection

and tβ
α is the tensorial contribution constructed from the fluxes (the field strengths of

the gauge fields in the supergravity multiplets). In D=11 supergravity [10] this tensorial

contribution reads

tβ
α =

i

18
eaFab1b2b3Γ

b1b2b3
β

α +
i

144
eaΓab1b2b3b4β

αF b1b2b3b4 , (1.3)

where F4 = dC3 = 1
4e

c4 ∧ . . . ∧ ec1Fc1...c4 is the field strength of the three-form gauge field

C3. In D=11, eq. (1.2) is the only restriction for Killing spinors, while in D=10 type II

and lower dimensional cases, they also have to satisfy an algebraic equation, ǫ
I
αMαβ = 0,

where the matrix Mαβ is constructed from the scalars and the field strengths (fluxes) of the

gauge fields of the corresponding supergravity multiplets. A hypothetical preonic solution

(for D=11 or IIA, IIB for D=10) would have 31 Killing spinors, ǫI
α. Since there is only

one bosonic spinor λα orthogonal to all of them,

ǫ
I

αλα = 0 , I = 1, . . . , 31 , α = 1, . . . , 32 , (1.4)

a preonic supergravity solution may also be characterized by such a preonic spinor λα.

Algebraically (i.e., from the structure of the M-theory superalgebra or ‘M-algebra’ [11]),

any k/32 is allowed for a BPS state [12, 13]. However, only (bosonic) solutions for the

following number of preserved supersymmetries have been found at present

k = 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 32

(see e.g. [14] for further discussion); the preonic solution is conspicuously missing in this list.

The interest on the possible existence of 31/32-supersymmetric or preonic solutions

began around 2003 [15, 16, 9]. Recently, a series of no-go results have been obtained for

the ‘free’, ‘classical’ D=11 and D=10 type II supergravities [17 – 20].2 These results were

1We will not consider here the N=1, D=10 supergravity-SYM interacting systems describing the low

energy limits of the two heterotic strings and type I ‘corners’ of M-theory.
2A very recent paper [21] states that the maximal fraction ( 6= 32/32) of supersymmetries preserved by

a solution of the (again, free and classical) type IIB supergravity is 28/32.

– 2 –
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obtained by looking at the consistency equation for the Killing spinors, ǫR = 0, where

the generalized curvature R is calculated using the (free, classical) supergravity equations

of motion. However, for supergravity with (α′) corrections the integrability condition and

the equations of motion will be modified (see [22]), and a full analysis remains to be

done. As a result, the existence of preonic solutions remains open when corrections are

present3 (see [18] and [23] for further discussion). Moreover, even the possible absence

of preonic solutions in the presence of corrections or sources from superbranes would not

preclude the preon hypothesis, as such a ‘preon conspiracy’ would still allow us to consider

all supersymmetric BPS states as composites of preons (in the same way as, by way of

an analogy, quark confinement does not prevent the existence of quarks). Although a

dynamical mechanism to construct k/32-BPS states out of 31/32-preons is lacking, a further

study of the properties of preons may shed light in this direction. With this in mind, we

consider in this paper the problem of AdS generalization of BPS preon. Not surprisingly,

the AdS preon will turn out to be related to the description of free massless conformal AdS

higher spin theories [24, 25] in the AdS-version of tensorial superspaces given by the OSp

supergroup manifolds [26 – 29]. In fact, a dynamical model for our AdS preon is provided

by the ‘preonic superparticle’ on OSp(1|32), as discussed in section 6.

Let us go back to the idea of preons as elementary ‘excitations’ over a fully su-

persymmetric vacuum. The supergravity solutions that describe fully supersymmetric

BPS states include [30], besides the Minkowski vacuum of superPoincaré symmetry, the

AdS(p+2) × S(D−p−2) spaces, (D, p) = (11, 2), (11, 5), (10, 3), and the pp-wave spaces which

will not be considered here. Thus, preons may correspond to the simplest excitations over

the Minkowski vacuum or over an AdS × S vacuum. However, their original definition

referred to the M-algebra [11], which is a generalization of the superPoincaré algebra.4

Although the M-algebraic language is universal (as suggested i.e. by the study of M-brane

and D-brane systems), and thus the preon notion is not restricted to considering excitations

over the Minkowski vacuum, it is natural to ask ourselves whether preons can be defined in

terms of a generalization of the AdS superalgebra. This is tied to the AdS generalization

of the M-algebra, which we will call the AdS-M-algebra. Our conclusion, which follows

from the BPS preon generalization to be presented here, is that the AdS-M-algebra is to

be identified with osp(1|32), which in our preonic context appears as a deformation of the

M-algebra. The algebra osp(1|32) as a generalized AdS superalgebra in D=11 had been

proposed in [34 – 36] (see also [37 – 40] for other related superalgebras). The osp(1|32) al-

gebra had already been singled out in the original D=11 supergravity paper [10], and used

3Let us also note that the above no-go statements have always been made for purely bosonic supersym-

metric solutions i.e., for supergravity configurations with all fermionic fields equal to zero, a restriction not

implied by the preon conjecture.
4To be more precise, this generalization of the superPoincaré algebra is given by the semidirect sum

of the M-algebra [11] and so(1, 10) (alternatively, one may take GL(32, R), the M-algebra automorphism

group [31], when no decomposition in gamma matrices is assumed), which can be shown to be an expan-

sion [32] of the osp(1|32) superalgebra. The (32+528)-dimensional M-algebra itself, which is the maximal

central extension of the abelian {Q, Q} = 0 superalgebra of the 32 fermionic generators (see [33]), is a

contraction of osp(1|32). Such a contraction is possible because the M-algebra and osp(1|32) have the same

dimension.

– 3 –
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as a basis for a discussion of the gauge structure of D=11 supergravity [41, 42] as well as in

early discussions of general supersymmetry algebras [43]; its relevance in M(atrix)-theory

had been put forward in [44].

2. BPS preons, the preonic supermultiplet and the M-algebra

An abstract BPS preonic state may be characterized by a single bosonic preonic spinor λα,

|BPS preon〉 = | λ〉 , (2.1)

which is orthogonal to the 31 bosonic spinors ǫ
I

α, ǫ
I

αλα = 0 , which determine the 31

supersymmetries preserved by the preon,

ǫ
I

αQα| BPS preon〉 = 0 , I = 1, . . . , 31 , (2.2)

(cf. eq. (1.4)). Due to the above orthogonality, eq. (2.2) implies that Qα| λ〉 ∝ λα. This

may be expressed as

Qα| λ〉 = λα| λ
f 〉 , (2.3)

where | λf 〉 is a state with odd Grassmann parity (assuming that the original preonic state

| λ〉 is bosonic, as befits a state corresponding to a purely bosonic solution of supergravity.

The simplest preonic supermultiplet contains only two states, | λ〉 and | λf 〉,

||λsuper〉〉 :=

(

|λ 〉

|λf 〉

)

, (2.4)

with the action of the supersymmetry generator on | λf 〉 being defined in terms of the same

bosonic spinor λα,

Qα| λ〉 = λα| λ
f 〉 , Qα| λ

f 〉 = λα| λ〉 . (2.5)

These supersymmetry transformations may be collected in one compact equation

Qα||λ
super〉〉 = χλα||λ

super〉〉 , χχ = 1 , (2.6)

in terms of the preonic supermultiplet ||λsuper〉〉 and a Clifford algebra variable χ. When

the preonic supermultiplet is represented by a column vector, as in eq. (2.4), χ is realized

as the σ1 Pauli matrix, χ =

(

0 1

1 0

)

.

Now, assuming that λα is a c-number,

Qβλα = λαQβ , (2.7)

we conclude that the supersymmetry transformations generate the M-algebra,

{Qα , Qβ} = Pαβ , [ Pαβ , Qγ ] = 0 , [ Pαβ , Pγδ ] = 0 . (2.8)

– 4 –
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Indeed, using (2.7) we find from (2.5) that both the BPS preon and its superpartner are

eignestates of the generalized momentum Pαβ (here characterized as the most general r.h.s.

for the {Qα , Qβ} anticommutator). The common eigenvalue matrix of |λ〉 and |λf 〉 is given

by the tensor product λαλβ of two copies of λ,

{

Pαβ|λ 〉 = λαλβ|λ 〉

Pαβ |λ
f 〉 = λαλβ|λ

f 〉
⇔ Pαβ ||λ

super〉〉 = λαλβ||λ
super〉〉 . (2.9)

As the preonic spinor λα is a c-number (eq. (2.7) also implies Pαβλγ = λγPαβ), one eas-

ily finds that on a preonic state or on the preonic supermultiplet [P,P ]||λ〉〉 = 0. This

implies [P,P ] = 0 if we do not allow for the presence of other generators, since the pos-

sibility [P,P ] = cP , allowed by Grassmann parity conservation, is ruled out because λ is

nonvanishing and [P,P ]|λ〉 = cλλ|λ〉 = 0 would require c = 0.

3. The AdS-M-algebra as suggested by AdS preons

The previous discussion shows that the original definition of the BPS preon [1] repro-

duces the M-algebra (2.8), which generalizes the superPoincaré algebra by involving the

generalized momenta generator Pαβ = Pβα. This includes, in addition to the standard

momenta generator Pm (through P/αβ = PmΓm
αβ), a set of tensorial central charges that

reflect the existence of extended objects in M-theory: they can be realized as topologi-

cal charges for various branes [45]. For instance, the SO(1, 10)-covariant decomposition

Pαβ = Γm
αβPm + iΓa1a2

αβ Za1a2 + Γa1...a5
αβ Za1...a5 , obtained by using the D = 11 gamma ma-

trices, includes the two- and five-index central charges Za1a2 and Za1...a5 . Their spa-

tial components, Zi1i2 and Zi1...i5 , and those of their duals, Zi1...i9 ∝ ǫ0i1...i9jZ0j and

Zi1...i6 ∝ ǫ0i1...i6j1...j4Z0j1...j4, reflect, respectively, the existence of the M2-brane (eleven-

dimensional supermembrane), the M5-brane, the Horava-Witten hyperplanes (M9-branes)

and the Kaluza-Klein monopole (KK6-brane) [45 – 47].

To look for the AdS generalization of the BPS preon we start from the fact that, in

lower dimensions D=4, 6 and 10, a BPS preon wavefunction in its tensorial coordinate

representation is given by a scalar superfield on the corresponding tensorial superspace

Σ(
n(n+1)

2
|n), n =4, 8, 16, and can be identified [2 – 4] with a wavefunction describing a tower

of massless conformal higher spin fields [7, 4] (see section 5).5 Now, the free AdS conformal

massless fields can be described in the same manner by the equations for a scalar superfield

on the OSp(1|n) supermanifolds which, thus, provide the AdS generalizations of the flat,

tensorial Σ(n(n+1)
2

|n) superspaces [26, 27, 48 – 50]. This suggests identifying an AdS preon

state with the one whose wavefunction is the D=11, n=32 counterpart of the wavefunction

describing, in lower D=4 and likely in D=6,10 dimensions, towers of free conformal higher

spin fields in AdS4,6,10 spacetimes respectively [27, 50].6

5The case n = 2 corresponds to a scalar superfield on Σ(3|2), which coincides with the standard D=3

superspace, and no higher spin fields appear.
6 This is the case for D=4, n=4. That a scalar field theory on the OSp(1|n) supermanifold for n = 8, 16

describes the D=6,10 free massless conformal AdS higher spin theories has still to be proven (e.g., by

– 5 –
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The first consequence of this assumption is the identification of the AdS-M-algebra.

We conclude from the AdS preonic point of view that the appropriate AdS generalization

of the M-algebra (see [44, 34 – 36, 39] for earlier discussions), the AdS-M-algebra, is the

orthosymplectic osp(1|32) one,

{Qα , Qβ} = Mαβ , [ Mαβ , Qγ ] =
2

R
Cγ(αQβ) ,

[ Mαβ , Mγδ] =
2

R
(Cγ(αMβ)δ + Cδ(αMβ)γ) , (3.1)

where Cαβ = −Cβα is the nondegenerate 32 × 32 invariant Sp(32) symplectic metric.

The parameter R is introduced to make the possibility of contracting osp(1|32) to the M-

algebra (2.8) [44] explicit. It is convenient to take R with dimensions of length; then it corre-

sponds to the radius of the generalized AdS space, for which the Mαβ play the rôle of isome-

try generators. In the R→ ∞ limit the Mαβ symplectic generators of osp(1|32) become the

abelian generalized momenta Pαβ . Reciprocally, osp(1|32) is a deformation of the M-algebra

characterized by the radius deformation parameter R. Algebra contractions abelianize part

of the generators, and deformations go in the inverse direction; in view of this, it is not

surprising that the AdS preon turns out to be a non-commutative deformation of the orig-

inal M-algebra preon definition [1]. Let us note, to avoid confusion, that this AdS preon

does not correspond to a solution of some ‘deformed’ supergravity, but rather to a possible

solution of standard supergravity albeit with higher order corrections and/or brane sources.

4. AdS preons

The discussion in section 2 indicates that the AdS generalization of the BPS preon notion

will require dropping the commutativity property of the preonic spinor since, by assuming

eq. (2.7), we arrived at the M-algebra from the preonic supermultiplet.

Further, since we want that in the R → ∞ limit the AdS preonic supermultiplet be-

comes the M-algebra one, we shall assume that the AdS supersymmetry generators trans-

form the AdS preon and its superpartner among themselves in a way similar to (2.3), where

now a noncommuting but still Grassmann even preonic spinor Λα replaces the c-number λα,

Qα|λ〉 = Λα|λ
f 〉 , Qα|λ

f 〉 = Λα|λ 〉 , [Λα , Λβ ] 6= 0 . (4.1)

To have a suitable R→ ∞ limit, we conclude that [Λα , Λβ ] ∝ 1
R

. As the required coefficient

is a dimensionless antisymmetric spin-tensor, it is natural to identify it with Cαβ. In such a

way we find the following commutation relations for the Λα spinor operator entering (4.1),

[Λα , Λβ] = −
i

2R
Cαβ , (4.2)

which can be realized by

Λα = λα −
i

4R
Cαβ

∂

∂λβ
. (4.3)

methods similar to those used in [4] to show that a scalar field on the flat n = 8, 16 tensorial spaces

describes free conformal higher spin theories in D=6,10 Minkowski spaces, respectively).

– 6 –
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Notice that the replacement λα → Λα can be treated as passing to the Moyal star product,

λα · → Λα · = λα ∗ , (4.4)

see [27]. Eqs. (4.2), (4.4) are a deformation of the abelian [λα , λβ] = 0, and so

eqs. (4.1), (4.2) constitute a deformation of (2.6) resulting from the non-commutativity

of Λα. In the R → ∞ limit of the deformation parameter, Λα becomes the commutative

preonic spinor λα of the previous ‘flat’ case. Thus, the flat limit of the AdS preon reproduces

the original M-algebraic BPS preon definition [1], of which the AdS preon is a deformation.

Denoting the AdS preonic supermultiplet also by ||λsuper〉〉, as in eq. (2.4), the two

equations in eq. (4.1) are collected in a single equation (cf. (2.6)),

Qα||λ
super〉〉 = χΛα||λ

super〉〉 , χχ = 1 , Λα = λα −
i

4R
Cαβ

∂

∂λβ
, (4.5)

which involves the Clifford algebra element χ (see eq. (2.6)) and the non-commutative

preonic spinor Λα. Thus, the AdS preonic supermultiplet is associated with the following

representation of the generators of the osp(1|32) algebra (eq. (3.1))

Qα = χΛα , Mαβ = 2Λ(αΛβ) , (4.6)

where Λα satisfies the algebra of eq. (4.2) and χ2 = 1. In matrix form, the preonic

realization of the osp(1|32) generators reads

Qα =

(

0 Λα

Λα 0

)

, Mαβ =

(

2Λ(αΛβ) 0

0 2Λ(αΛβ)

)

. (4.7)

The basic commutation relations of Λα together with the representation of Mαβ in (4.6)

are collected in the multiplication table

ΛαΛβ = −
i

4R
Cαβ +

1

2
Mαβ . (4.8)

5. BPS preons, tensorial superspaces and massless conformal higher spin

fields

Our AdS generalization of the M-algebraic BPS preon, eq. (4.1), and its associated AdS-

M-algebra, are suggested by the properties of higher spin theory as described by scalar

superfields in tensorial superspaces. This will be shown in this section, which we begin by

considering the realization of the M-algebra preon as a scalar superfield in flat, tensorial

superspace before moving to the AdS case in section 5.5.

5.1 Preonic superwavefunction in tensorial superspace Σ(n(n+1)
2

|n)

Tensorial superspaces Σ(
n(n+1)

2
|n) are parametrized by n(n + 1)/2 even spin-tensor coordi-

nates Xαβ and by n odd, fermionic coordinates θα (see e.g. [8, 12, 33, 3]),

Σ(
n(n+1)

2
|n) = { (Xαβ , θα) } , Xαβ = Xβα , α = 1, . . . , n . (5.1)

– 7 –
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In D=4,10 and 11 the minimal spinors have n=4, 16 and 32 components, and their

associated even coordinates Xαβ have 10, 136 and 528 components respectively. These

include, besides those of the spacetime D-vector, additional bosonic tensorial coordinates.

Specifically,

D=4 : Σ(10|4) ={(xm, y[mn], θα)}, Xαβ = xmγαβ
m + ymnγαβ

mn; (5.2)

D=10: Σ(136|16) ={(xm , y[mnpqr], θα)} , Xαβ = xmσ̃αβ
m + ymnpqrσ̃αβ

mnpqr ; (5.3)

D=11 : Σ(528|32) ={(xm, y[mn], y[mnpqr], θα)},

Xαβ =xmΓαβ
m +ymnΓαβ

mn+ymnpqrΓαβ
mnpqr. (5.4)

The generalized momentum and the supersymmetry generators can be realized as

differential operators in Σ(n(n+1)
2

|n),

Pαβ = −i∂αβ , Qα = ∂α − iθβ∂αβ , where ∂αβ := ∂
∂Xαβ , ∂α := ∂

∂θα (5.5)

(these give {Qα, Qβ} = 2Pαβ , but the inclusion of the 2 here simplifies the coefficients be-

low). The (Xαβ , θα) coordinates representation of the BPS preonic supermultiplet ||λsuper〉〉

wavefunction is

Φ(λ,χ)(X, θ) = 〈〈X, θ||λsuper〉〉 ; (5.6)

notice that the χ dependence of the l.h.s. comes from ||λsuper〉〉, see eq. (4.5).

The defining relation (2.9) implies that Φ satisfies the differential superwave equation

(∂αβ − iλαλβ)Φ(λ,χ)(X, θ) = 0 . (5.7)

This preonic equation [3] coincides with the unfolded equations for higher spin fields [48, 29]

formulated in tensorial space;7 it appeared for the first time in the quantization [7] of the

generalized superparticle model [8] on tensorial superspace Σ(
n(n+1)

2
|n).

5.2 A model for a pointlike BPS preon in tensorial superspace Σ(n(n+1)
2

|n)

The action for a superparticle in Σ(
n(n+1)

2
|n) with one auxiliary bosonic spinor reads [8]

S =

∫

dτλαλβ(Ẋαβ − iθ̇(α θβ)) , α = 1, . . . , n . (5.8)

It describes a 0-brane preon [2, 3] or preonic superparticle since its ground state preserves

(n − 1) out of n supersymmetries. The Σ(n(n+1)
2

|n) superspace preonic wavefunction is

obtained from the quantization of the 0-brane model (5.8). To exhibit this schematically

let us note that eqs. (2.9), (5.7) look as the quantum mechanical representation of the

generalized Cartan-Penrose relation

Pαβ − λαλβ ≈ 0 , (5.9)

7In refs. [48, 49, 29] the unfolded equations are written in the form
“

∂

∂Xαβ − i ∂
∂µα

∂

∂µβ

”

C(X, µ) = 0,

which is related to the preonic equation (5.7) by a Fourier transformation in the auxiliary bosonic spinor

variable λα.

– 8 –
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which appears as a primary constraint for the canonical generalized momentum for Xαβ .

Actually, the situation is slightly more complicated, because this constraint is not first

class, and its conversion to a first class constraint requires the addition of a new variable.

We will just state the results and refer to [7] for details.

The quantization of the pointlike preon model (5.8) produces a superwavefunction Υ

that depends on Xαβ , θα, λα, and on an additional Clifford algebra variable χ̃, χ̃2 = 1,

which is introduced in the process of converting the fermionic second class constraint into

a first class one. The wavefunction Υ satisfies the wave equation [7] which results from

imposing the 32 fermionic first class constraints of the converted system,

(Dα − χ̃λα)Υ(X, θ, λ, χ̃) = 0 , Dα := ∂α + iθβ∂αβ , χ̃2 = 1 , (5.10)

where Dα is the covariant derivative in tensorial superspace commuting with the supersym-

metry generator Qβ in (5.5). Thus, eq. (5.10) is supersymmetry invariant provided that

χ̃ is inert under supersymmetry (as the bosonic spinor variable λα is). The consistency

conditions for the quantum fermionic first class constraints (5.10) give the bosonic first

class constraint

(∂αβ − iλαλβ)Υ(X, θ, λ, χ̃) = 0 , (5.11)

a clear counterpart of (5.7).

Although (5.10) is similar to (2.6), it includes the supersymmetric covariant derivatives

Dα rather than Qα in (5.5). To solve this, let us now observe that the shift of a Clifford

algebra variable χ by a nilpotent one ψ, χ → χ̃ = χ − ψ, is still a Clifford element if the

shift anticommutes with χ, {χ,ψ} = 0. In the present case, and with χ̃ = χ− 2θλ, we find

(χ− 2θλ)2 = 1 ⇐

{

χ2 = 1 , (θλ)2 = 0 ,

{χ , θλ} = 0 .
(5.12)

With this in mind it is easily seen that eq. (5.10) gives the coordinate representation of

the transformation rules (2.6), (Qα − χλα)Υ = 0, of the preonic supermultiplet provided

we identify

Υ(X, θ, λ, χ̃) = Φ(λ,χ)(X, θ) := 〈〈X, θ||λsuper〉〉 , χ̃ = χ− 2θλ . (5.13)

For n = 4, 8, 16 (D = 4, 6, 10) the above wavefunction, with the additional projection

condition Υ(X, θ, λ, χ̃) = Υ(X, θ,−λ,−χ̃) (see [7, 50] for a discussion), describes a tower

of massless, conformal higher spin fields [7, 4].

5.3 D=4,6,10 massless conformal higher spin fields from the preonic wavefunc-

tion on Σ(
n(n+1)

2
|n) (n = 4, 8, 16)

A Clifford superfield [51] is a function depending on Clifford algebra variables, like our Υ(χ̃)

in (5.13) with χ̃χ̃ = 1. It is similar to the familiar superfields in that its series decompo-

sition in the Cifford algebra arguments is finite. In the present case, where Υ(χ̃) depends

on only one Clifford variable, the superfield contains only two (superfield) components,

Υ(X, θ, λ, χ̃) = Φ0(X, θ, λ) + χ̃Φ1(X, θ, λ) . (5.14)
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Eq. (5.10) implies that

DαΦ0 = λαΦ1 , DαΦ1 = λαΦ0 . (5.15)

These equations can be solved by expressing, say, Φ1 in terms of Φ0, although to write such

an expression in a GL(n)-covariant manner one has to introduce a bosonic spinor uα ‘dual’

to λα (i.e. uαλα = 1): Φ1 = −iuαDαΦ0. Now applying Dβ to the first equation in (5.15)

and using the second one, we find the following equation restricting only the Φ0(X, θ, λ)

superfield (see [50])):

(DαDβ − λαλβ)Φ0 = 0 . (5.16)

The symmetric part of (5.25) gives the preonic equation (5.7), while the antisymmetric

part reads D[αDβ]Φ
0 = 0. This equation was proposed in [50] as a superfield generalization

of the Vasiliev field equations [48, 29] for the wavefunctions describing the towers of all

the bosonic and fermionic conformal higher spin fields in D = 4 tensorial space. Indeed,

the same equation is obeyed by the wavefunction integrated over the bosonic spinor space

φ(X, θ) =
∫

dnλΦ0(X, θ, λ),

D[αDβ]φ(X, θ) = 0 . (5.17)

Inserting the superfield expansion

φ(X, θ) = b(X) + θαfα(X) +

n
∑

i=2

θα1 . . . θαiφα1...αi
(X) , (5.18)

in eq. (5.17), one finds [50] that the higher components of the φ(X, θ) superfield vanish,

φα1...αi
(X) = 0 for i ≥ 2, and that the first two obey the bosonic and fermionic Vasiliev

equations [48]

∂α[β∂γ]δb(X) = 0 , ∂α[βfγ](X) = 0 , α, β, γ, δ = 1, . . . , n . (5.19)

The proof that for n = 4 these equations give a tower of all the D = 4 massless higher

spin fields was given in [48]. That the n = 8 and n = 16 equations also describe a tower

of conformal massless fields in D = 6 and D = 10 was shown in [4], to which we refer the

reader for details.

5.4 Continuous spectrum of the D=11 preonic superparticle

The situation for the D=11, n=32 M-theoretic case is less clear. What makes it differ-

ent from the previous D = 3, 4, 6 and 10 cases is that in D=11 the vector λΓmλ is not

lightlike, (λΓmλ)2 6= 0, which means that PmP
m 6= 0 for the D=11 spacetime momentum

Pm = Γαβ
m Pαβ ∝ λΓmλ. Moreover, PmP

m becomes an arbitrary constant for the tenso-

rial superspace Σ(528|32) pointlike preon model of eq. (5.8) [8, 12], which is said to have

a ‘dynamically generated mass’ [52]. This property is tantamount to having a continuous

mass spectrum. Since this is typical of a composite system, we arrive at a complementary

description of a BPS preon: albeit fundamental, it possesses a property associated with

composite systems. This situation is not new: the D=11 supermembrane (M2-brane) was
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considered, as a fundamental object, as a D=11 counterpart of the D=10 fundamental

string and, at the same time, it was shown to have a continuous spectrum, a property that

was explained in the Matrix model conjecture in which the M2 brane is considered as a

composite of D0-branes (N=2, D=10 massive superparticles). Such a D0-brane picture is

dual to the one in which the M2-brane is considered to be fundamental. As for preons, we

also have that an elementary preon state has components in all the tensorial charges asso-

ciated with the 1/2 BPS branes, which are themselves composite in the preonic picture. We

note, however, this latter property is also shared with the D=4,6,10 dimensional counter-

parts of the M-algebraic BPS preon, which nevertheless do not possess a continuous mass

spectrum and rather describe towers of massless conformal higher spin fields as already

discussed. The above dual aspect of the preon holds for D=11, the M-theory dimension.

The mechanism to construct k/32-BPS states with 1 < k < 31 from the BPS preons is

unknown, and one of the motivations to study further the properties of BPS preons is to look

for new insights in this direction. It is natural to assume that the reduced supersymmetry

of a k/32-BPS state containing ñ = 32−k preons is the result of some kind of ‘interaction’

among them. If so, a possible description of such an interaction in D = 11 should be

similar to a theory of interacting higher spin fields in the lower D = 4, 6, 10 dimensions.

It is known that a selfconsistent interaction of higher spin fields is possible in AdS but

not in Minkowski spacetime [5] (the interaction depends on the inverse of the cosmological

constant [53, 5]). Thus, the search for a selfconsistent interaction of an infinite tower of

higher spin fields begins by formulating the free equations for these fields in AdS spacetime

or an AdS superspace.

5.5 Equations for AdS4 conformal higher spin fields on the OSp(1|4) supergroup

manifold

The AdS generalization of the free higher spin equations in tensorial superspace, eq. (5.10),

was obtained in [27]. In our notation it reads [50]

(∇α−χ̃Λα)Υ(X, θ, λ, χ̃) = 0 , Λα =λα − 1
4R
Cαβ

∂
∂λβ , χ̃2 =1 , α=1, . . . , n , (5.20)

where ∇α is defined by the decomposition of the exterior derivative acting on the OSp(1|n)

manifold,

d = Eαβ∇αβ + Eα ∇α , (5.21)

in terms of the left-invariant Maurer-Cartan (MC) forms (Eαβ , Eα). These satisfy the

osp(1|n) MC equations,

dEαβ +
1

R
CγδE

αγ ∧ Eβδ+iEα ∧ Eβ =0 , DEα := dEα +
1

R
CγδE

αγ ∧ Eδ = 0 . (5.22)

The above ∇α and ∇αβ satisfy the osp(1|n) superalgebra,

{∇α,∇β} = 2i∇αβ , [∇αα′ ,∇β ] =
2i

R
Cβ(α∇α′) , (5.23)

[∇αβ,∇γδ ] =
2i

R
Cα(γ∇δ)β +

2i

R
Cβ(γ∇δ)α . (5.24)
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Decomposing the Clifford superfield Υ (eq. (5.14)), it is found that its second compo-

nent can be expressed in terms of the first one (as in (5.15) for flat tensorial superspace)

and that its first component obeys [50]

(∇α∇β + ΛβΛα) Φ0 = 0 . (5.25)

The symmetric (αβ) part of this equation gives [28] the AdS preonic equation that gener-

alizes (5.11),
(

∇αβ −
i

2
(ΛαΛβ + ΛβΛα)

)

Φ0 = 0. (5.26)

The antisymmetric [αβ] part of (5.25) gives the AdS generalization of equation (5.17) for

a scalar superfield in flat tensorial superspace proposed in [50],
(

∇[α∇β] +
i

4R
Cαβ

)

Φ0 = 0, (5.27)

The set of eqs. (5.20) and (5.26) is equivalent to the following one-form differential

equation proposed in [27]

(d− ŵ0)Υ̂ = 0 , (5.28)

where ŵ0 is given by ŵ0 = EαβMαβ +EαQα with Mαβ = 2Λ(αΛβ) , Qα = χΛα (eqs. (4.6))

and Λα obeys the commutation relations (4.2). Υ̂ depends on the (Xαβ , θα) variables of

the OSp supergroup manifold, as well as on χ̃ and the operator Λ, which is why Υ̂ (denoted

|Φ〉) was called Fock module in [27]. Eq. (5.28) can also be written in the form [27]

(d− w0∗)Υ = 0 , (5.29)

where w0 = Eαβλαλβ + Eα χλα is now used with the star product of eq. (4.4). The

selfconsistency equations for (5.29), dw0 = w0 ∗ ∧w0, give the ospMC equations (5.22). The

same equation without star product, (d−w0)Υ = 0, which leads through its selfconsistency

condition to the MC equations of the tensorial superspace algebra, describes free higher spin

fields in flat Minkowski spacetime. Thus, the transition from the Minkowski higher spin

field equations in flat tensorial superspace to the equations on the OSp supergroup manifold

describing the higher spin fields in AdS4 is given by a deformation which introduces non-

commutativity (see [25]).

Summarizing, the AdS preon of section 4 can be described by the scalar field theory

on the OSp(1|32) supergroup manifold. This is the n = 32 (D = 11) element of a family

of scalar field theories on the OSp(1|n) manifolds, the n = 4 representative of which,

OSp(1|4), describes the higher spin theory on AdS4. As for the n = 8 and n = 16 cases,

OSp(1|8) and OSp(1|16), they are likely to describe the corresponding massless conformal

higher spin theories on AdS6 and AdS10 spaces (see footnote 6).

6. The AdS preon as a BPS state. Preservation of all but one AdS super-

symmetries.

The preonic spinors Λα of the AdS preon are non-commuting (eqs. (4.1) and (4.5)) and so

are Mαβ in osp(1|32) (3.1) that replace the commutative Pαβ of the M-algebra (2.8). As a
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result, the ‘momenta’ sector of the osp(1|n) superalgebra does not allow for the M-algebraic

analysis in [1] and it is not obvious how to relate our AdS preon with the preservation of

a fraction of the supersymmetries, a typical property of a BPS state.

To clarify this point, let us use the fact [28] that the scalar superfield equations on

the OSp(1|n) supergroup manifold, eqs. (5.20), (5.26), appear in the quantization of the

generalized superparticle on the OSp(1|n) supermanifold8 [26]

S =

∫

dτλαλβÊ
αβ
τ , (6.1)

where Êαβ
τ dτ is the pullback to the worldline of the Eαβ Maurer-Cartan form on OSp

(see eq. (5.22), cf. (5.8)). This superparticle has the properties of an AdS preon: its

ground states preserve all the supersymmetries but one, as reflected by the 31 κ-symmetries

possessed by the n = 32 version of the OSp(1|n) model of eqs. (6.1) (see [2, 3] for further

discussion in the M-algebraic language).

To clarify this point, consider first the case of a pointlike M-algebra preon. The preonic

0-brane action in flat tensorial superspace is given by eq. (5.8). A preonic BPS state can be

associated with a purely bosonic solution of the equations of motion that follow from this

action. This is preserved by the supersymmetries which keep the fermionic field equal to

zero, θ(τ) = 0. The complete set of fermionic symmetries of the action (5.8) include global

supersymmetry ε and local fermionic κ-symmetry. In the present case of flat tensorial

superspace, a general fermionic transformation δ = δε + δκ reads [8]

δθα = δεθ
α + δκθ

α := εα + κI(τ)ǫI
α(τ) , ǫI(τ)

αλα(τ) = 0 ,
I = 1, . . . , 31 ,

α = 1, . . . , 32 ,
(6.2)

where the 31 bosonic spinors ǫI
α(τ) are defined by the condition of being orthogonal to

λα(τ). Then the supersymmetry which is preserved by the purely bosonic, θα(τ) = 0

ground state solution is characterized by

εα = −κIǫI
α ⇐ δθα = 0 . (6.3)

This supersymmetry depends on the 31 parameters κI of local fermionic κ-symmetry, which

become constant on the solution. The fermionic spinor εα is constant and so should be

κIǫI
α; the rôle of the equations of motion in the supersymmetry preservation is seen at this

point. Indeed, the auxiliary bosonic spinor λα is constant on-shell, ∂τλα = 0, so that the 31

8 The OSp(1|n) supergroup manifold is ‘GL(n) flat’ [28] and this allows to relate the AdS and the flat tan-

gent superspace versions of the generalized superparticle or preonic 0-brane model of [8] (eqs. (6.1), (5.8)).

After a Penrose twistor transform in both of them, they are described by the same action in terms of a

real OSp supertwistor [8] (fundamental representation of OSp(1|2n)). Then, the quantization in momen-

tum space gives the same wavefunctions, and the specific AdS or Minkowski spacetime wavefunctions are

obtained by defining appropriate measures for the Fourier transforms that lead to their coordinate rep-

resentation [28]. This is related to the fact that both the flat tensorial superspace Σ(
n(n+1)

2
|n) and the

OSp(1|n) supergroup manifolds can be identified with different cosets OSp(1|2n)/[ GL(n) ⊂×Σ̌(
n(n+1)

2
|n)] of

the OSp(1|2n) supergroup with respect to differently chosen tensorial superspace subgroups Σ̌(
(n(n+1))

2
|n)

in OSp(1|2n).
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bosonic spinors ǫαI orthogonal to it can be chosen constant as well and so κI is also constant

(see eq. (6.3)). Thus, the constant ε of the preserved rigid supersymmetry εα is the sum

of products of the odd, constant κI with the constant bosonic spinors ǫI
α. The presence

of 31 free fermionic parameters κI in (6.3) allows us to state that a bosonic solution of

the equations following from the action (5.8) preserves 31 target space supersymmetries.

This property allows us to identify [2, 3] the ground state of the 0-brane model (5.8) with

a pointlike BPS preon, as it preserves 31 out of the 32 supersymmetries. Further, this

preservation of the target supersymmetries (tensorial superspace or M-algebra supersym-

metries) may be formulated in abstract quantum mechanical terms for a BPS preon state,

as in eq. (2.2), without reference to any specific coordinates or momenta representation.

The situation is different in the AdS case. An AdS preon appears as bosonic solution

of the equations of motion that follow from the action (6.1) on the OSp(1|32) (OSp(1|n))

supergroup manifold. The superparticle lagrangian is now given in terms of the bosonic

MC forms of OSp(1|n) (eqs. (5.21). The action is again invariant under the 31- ((n − 1)-)

parametric κ-symmetry transformations characterized by [26]

iκE
αβ := δκZ

MEαβ
M (Z) = 0 , iκE

αλα := δκZ
MEα

Mλα = 0 , ZM := (Xαβ , θα) , (6.4)

which can be described in terms of 31 (n − 1) bosonic spinors ǫI
α orthogonal to λα as in

eq. (1.4),

iκE
α := δκZ

MEα
M = κI(τ)ǫI

α(τ) . (6.5)

The equations of motion for the action (6.1) include D(λαλβ) = 0, with the Sp(n) covariant

derivative Dλα := dλα+ 1
R
E·β

α λβ as in (5.22). Since ǫαI λα = 0 , the bosonic ‘Killing’ spinors

ǫI
α in (6.5) are now covariantly constant rather than constant, DǫI

α := dǫI
α− 1

R
ǫI

βE·α
β = 0

and hence they are τ -dependent.

The transformation of the fermionic coordinate functions under the OSp(1|32) sym-

metry of the action reads δεθ
α(τ) = εα − 1

R
εβXβ

α(τ) + O( 1
R2 ) + O(θθ). Thus, the super-

symmetries preserved by the ground state with θα = 0 are characterized by (cf. eq. (6.3))

εα = −κIǫI
β

(

δβ
α +

1

R
Xβ

α +O

(

1

R2

))

⇐ δεθ
α|θ=0 = 0 . (6.6)

For finite R the terms involving the explicit Xαβ (and θα) dependence hamper the abstract

quantum mechanical description of the supersymmetries preserved by the AdS preonic su-

perparticle ground state. When R 7→ ∞, in which limit εα becomes constant, eq. (6.6)

reproduces (6.3) and an abstract quantum mechanical description of the preserved sym-

metries becomes possible.

Hence, our AdS preon is a BPS state preserving 31 ((n-1) in general) supersymmetries.

This can be seen in the generalized coordinates representation of the preonic superwave-

function or through the corresponding pointlike model of eq. (6.1), where one also observes

(eq. (6.6)) that the preserved supersymmetries are X- (and θ-)dependent. This shows why

in the AdS case it is difficult to describe the preserved supersymmetries in an abstract

quantum mechanical state terms. In other words, the above discussion explains why repre-

sentation of the OSp supersymmetry generators on the states in (4.1), which emphasize the
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single broken supersymmetry, cannot be reformulated through the 31 preserved supersym-

metries. Such a representation is provided, instead, by a deformation of the M-algebraic

definition of the single supersymmetry broken by the BPS preon. This is obtained by re-

placing the bosonic spinor λα by the non-commutative preonic spinor Λα (eqs. (4.1), (4.2))

or by moving to the Moyal product, λα· 7→ Λα = λα∗, eq. (4.4).

7. Conclusions and discussion

We have given here the AdS generalization of the M-algebraic definition of the BPS preon.

Although the M-algebra language is meant to be universal (as suggested by the study

of the 1/2-BPS superbrane states), and so is the preon concept [1], the question of its

AdS generalization arises naturally when considering a preon as an excitation over a fully

supersymmetric AdS-type (rather than Minkowski) vacuum. We have then found that the

AdS preon is a deformation of the M-algebra one [1] (as e.g, eq. (4.5) is a deformation

of (2.6)). This deformation character is exhibited by the explicit presence of 1/R in all the

AdS equations, which reproduce those of the flat case in the R → ∞ limit. Conversely,

all our AdS equations are obtained by the replacement of the · product by the star ∗ one,

eq. (4.4), in the M-algebraic flat ones.

Our generalization is suggested by the observation that the D=4,6,10 tensorial su-

perspace counterparts of the M-algebra BPS preon can be identified [2, 3, 50] with the

towers of all the free massless, conformal higher spin fields in the respective flat Minkowski

spaces. In other words, the wavefunctions of the n = 4 and n = 8, 16 counterparts of the

M-algebra BPS preons in flat tensorial superspaces (the manifolds of the rigid Σ(
n(n+1)

2
|n)

tensorial superspace groups) describe infinite towers of free conformal higher spin field

strengths in D = 4 [7] (see also [48]) and in D = 6, 10 [4]. Similarly, we identify the wave-

function of an AdS preon state with the OSp(1|32) counterpart of the scalar superfield

on the OSp(1|4) supergroup manifold which describes [27, 28, 50] all the conformal higher

spin fields in AdS4 space. Thus, as the generalized AdS geometry of the free AdS4 higher

spin fields is described by the OSp(1|4) supergroup manifold (and, likely, the scalar super-

field on OSp(1|n) for n = 8, 16 describes the AdS massless conformal higher spin fields in

D=6,10 as well), our construction indicates that the AdS-M-algebra is given by osp(1|32),

in agreement with [44, 34, 35] (see also [36, 39]).

To see how to relate the AdS preon definition with the preservation of a fraction of the

supersymmetries, we have discussed in section 6 the superparticle model on the OSp(1|n)

supergroup manifold [26, 28]. The ground state of this model preserves 31 supersymmetries

associated with the 31-parametric κ-symmetry of its action. Therefore, it is a BPS preon

and the OSp superparticle can be called an AdS preonic 0-brane. However, the action of

this preserved part of the AdS supersymmetry on this BPS preonic state is X- (and θ-)

dependent, as it is the AdS supersymmetry acting on OSp(1|n) supermanifold. Thus, it is

hard to see this preserved supersymemtry in the abstract (bra-ket) quantum mechanical

language used to define the AdS preon (although there is no problem to describe it by a

superwavefunction in the generalized coordinate representation). This explains why the

preonic representation of the osp supersymmetry generators (4.6) cannot be obviously
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translated in terms of preserved supersymmetries and leads instead to a non-commutative

deformation of the M-algebraic definition of the BPS preon, singling out the supersymmetry

broken by the AdS preon. The appearance of a deformation is again not surprising if we

recall that the Moyal brackets were introduced in higher spin theory [25] to describe the

free D=4 higher spin theories in AdS4 space.

The notion of the AdS preon introduced here suggests that the search for a dynamical

mechanism to obtain the k/32-BPS states from the BPS preons may be related to the prob-

lem of constructing a consistent interaction theory of a tower of massless conformal higher

spin fields. Interacting, massless conformal higher spin theories were constructed in [24].

However, in our preonic context, we need a formulation of such an interacting theories in

tensorial superspaces (see [7, 48 – 50, 4] for the free case). This is still unknown, although

progress in this direction has been made by introducing higher spin gauge potentials in

generalized AdS superspace [29].

A natural development of the present work would be to look for composites of AdS

preons, in particular of 16 AdS preons, corresponding to 1/2-BPS states. From this point of

view, it would be interesting to see whether one can give a non-commutative counterpart of

e.g. the supermembrane BPS state and, if so, whether it would be related with the matrix

model of a non-commutative membrane which is used to describe coincident M2-branes9

(see [56] and refs. therein).
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[45] J.A. de Azcárraga, J.P. Gauntlett, J.M. Izquierdo and P.K. Townsend, Topological extensions

of the supersymmetry algebra for extended objects, Phys. Rev. Lett. 63 (1989) 213.

[46] C.M. Hull, Gravitational duality, branes and charges, Nucl. Phys. B 509 (1998) 216

[hep-th/9705162].

[47] D.P. Sorokin and P.K. Townsend, M-theory superalgebra from the M − 5-brane, Phys. Lett. B

412 (1997) 265 [hep-th/9708003].

[48] M.A. Vasiliev, Conformal higher spin symmetries of 4D massless supermultiplets and

osp(L, 2M) invariant equations in generalized (super)space, Phys. Rev. D 66 (2002) 066006

[hep-th/0106149].

[49] M.A. Vasiliev, Relativity, causality, locality, quantization and duality in the Sp(2M) invariant

generalized space-time, hep-th/0111119.

[50] I.A. Bandos, P. Pasti, D. Sorokin and M. Tonin, Superfield theories in tensorial superspaces

and the dynamics of higher spin fields, JHEP 11 (2004) 023 [hep-th/0407180].

[51] D.P. Sorokin, Supersymmetric particles, classical dynamics and its quantization, unpublished,

for a discussion see [7, 50].
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